Direct Photon: Beam energy and centrality dependence

Veronica Canoa Roman

Stony Brook University

Direct Photon sources in heavy ion collisions

Extracting thermal photon requires the systematic uncertainty of decay photons and prompt photons subtractions less than 10 %

Direct photon challenge

- Large yield and large anisotropy is observed at PHENIX—> challenge to theoretical models:
 - Large yield -> Early emission
 - Large v2 -> Late emission
- In order to understand this, PHENIX has measure data in:
 - Large systems: Au+Au 200, 62, 39 GeV and Cu+Cu at 200 GeV
 - Small systems: p+p, p+Au, d+Au (MB) at 200 GeV

Photon measurement techniques in PHENIX

Measuring energy deposited by photons in Calorimeter

- Good resolution at high pt
- Low pt contaminated by hadrons

Internal photon conversions

- Measure virtual photons
- Reduction in background from hadron decay by a factor of 5
- Low pt reach is limited(~1 GeV)
 as well as high pt

External conversions

- Measure real photons
- Extends pt<1 GeV and good resolution
- · High pt reach is limited

- Photon convert in :
 - HBD backplane (~60 cm)(2008- 2010 data).
 - VTX layers (2011- 2016 data)
- Sample purity >98 %
- Double ratio tagging method: cancelation of systematics

$$R_{\gamma} = \frac{\gamma^{incl}}{\gamma^{hadron}} = \frac{\left\langle \varepsilon_{\gamma} f \right\rangle \left(\frac{N_{\gamma}^{incl}}{N_{\gamma}^{\pi^{0} tag}} \right)_{Data}}{\left(\frac{\gamma^{hadron}}{\gamma^{\pi^{0}}} \right)_{Sim}}$$

- Measured raw yields
- Conditional tagging efficiency
- Simulated based on hadron data

$$\gamma^{direct} = (R_{\gamma} - 1) \gamma^{hadron}$$

- Photon convert in :
 - HBD backplane (~60 cm)(2008- 2010 data).
 - VTX layers (2011- 2016 data)
- Sample purity >98 %
- Double ratio tagging method: cancelation of systematics

- Measured raw yields
- Conditional tagging efficiency
- Simulated based on hadron data

$$\gamma^{direct} = (R_{\gamma} - 1) \gamma^{hadron}$$

- Photon convert in :
 - HBD backplane (~60 cm)(2008- 2010 data).
 - VTX layers (2011- 2016 data)
- Sample purity >98 %
- Double ratio tagging method: cancelation of systematics

- Measured raw yields
- Conditional tagging efficiency
- Simulated based on hadron data

$$\gamma^{direct} = (R_{\gamma} - 1) \gamma^{hadron}$$

- Photon convert in :
 - HBD backplane (~60 cm)(2008- 2010 data).
 - VTX layers (2011- 2016 data)
- Sample purity >98 %
- Double ratio tagging method: cancelation of systematics

- Measured raw yields
- Conditional tagging efficiency
- Simulated based on hadron data

$$\gamma^{direct} = (R_{\gamma} - 1) \gamma^{hadron}$$

Large systems

Direct photon in Au+Au 200 GeV

Phys. Rev. C 91 064904(2015)

- Direct photon yield is well established
 - pp consistent with pQCD
 - AuAu follows Ncoll scaled pp above 4 GeV
 - Significant excess below 3 GeV in Au+Au 200 GeV
 - Excess has nearly exponential shape

Direct photon in Au+Au 200 GeV

in the slope

Update: Direct photon v2 in Au+Au 200 GeV

$$v_n^{dir} = \frac{R_{\gamma} v_n^{inc} - v_n^{dec}}{R_{\gamma} - 1}$$

- We improved v2 measurement
- v2 high p_T compatible with zero (direct photon source is hard scattering)

Cu+Cu 200 GeV

*Consistent with Au+Au 200 GeV results at similar Npart

Au+Au 62.4 GeV and 39 GeV

Clear direct photon signal in Au+Au at 62.4 GeV and 39 GeV

Integrated Yield vs Npart

- Similar increase with Npart for different systems
- Npart saturates at same value for similar size systems at different beam energies
 - -> Limitations to compare different collision energies

Interplay between soft and hard scale

$$N_{coll} = \frac{1}{SY(\sqrt{s_{NN}})} \left(\frac{dN_{ch}}{d\eta}\right)^{\alpha}$$

$$SY(\sqrt{s_{NN}}) = c_1 \log(\sqrt{s_{NN}}) - c_2$$

arXiv:1805.04084

Universal behavior at low pT

Small systems

p+p 200 GeV

New fit using three different data sets

New result p+Au 200 GeV

$$R_{\gamma} = \frac{\gamma^{incl}}{\gamma^{hadron}} = \frac{\left\langle \varepsilon_{\gamma} f \right\rangle \left(\frac{N_{\gamma}^{incl}}{N_{\gamma}^{\pi^{0} tag}} \right)_{Data}}{\left(\frac{\gamma^{hadron}}{\gamma^{\pi^{0}}} \right)_{Sim}}$$

$$\gamma^{direct} = (R_{\gamma} - 1) \, \gamma^{hadron}$$

p+Au 200 GeV

p+Au 200 GeV

p+Au 200 GeV

R_p+Au 200 GeV

$$R_{AA} = \frac{d^2 N^{AA} / dp_T d\eta}{\langle N_{coll} \rangle d^2 N^{pp} / dp_T d\eta}$$

R_p+Au 200 GeV

Small system and scaling

Summary and Outlook

- Well established measurements of low p_T direct photons in Au+Au at 200 GeV :
 - Large yield above expected in the low pT region
 - Large anisotropy v₂ observed for the direct photons
- · Theoretical picture still incomplete to describe large yield and v₂ simultaneously
- · New results from Cu+Cu at 200 GeV, Au+Au at 62.4GeV & 39GeV and p+p,p+Au at 200 GeV
- Discovered a scaling behavior in large systems:
 - Across energies Ncoll is proportional to (dNch/dη)^{1.25}
 - At the same center of mass energy, low at high pT scale with Ncoll
 - At all energies, low pT yield scale with (dNch/dη)^{1.25}
- Measure a excess of direct photon in central p+Au at 200 GeV
 - Data suggest transition from p+p to A+A like scaling
- Future measurements from PHENIX :
 - Search for direct photons in small systems: d+Au (2016) BES, ³He+Au (2014)
 - High statistics (factor>10) Au+Au data from 2014 & 2016
 - Data from different collision geometry Cu+Au (2012)

Backup slides

Teff vs Collision Energy

Possible increase of T_{eff} with increasing beam energy